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Measuring density dependence in survival
from mark- recapture data
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abstract We discuss the analysis of mark- recapture data when the aim is to quantify

density dependence between sur vival rate and abundance. We describe an analysis for

a random eþ ects model that includes a linear relationship between abundance and

survival using an errors-in-variables regression estimator with analytical adjustment for

approximate bias. The analysis is illustrated using data from short-tailed shearwaters

banded for 48 consecutive years at Fisher Island, Tasmania, and Hutton’s shearwater

banded at Kaikoura, New Zealand for nine consecutive years. The Fisher Island data

provided no evidence of a density dependence relationship between abundance and

survival, and con® dence interval widths rule out anything but small density dependent

eþ ects. The Hutton’s shearwater data were equivocal with the analysis unable to rule

out anything but a very strong density dependent relationship between survival and

abundance.

1 Introduction

1.1 General background

Mark- recapture models are useful for summarizing encounter history data using

population parameters such as survival and birth rates or abundance. The associ-

ated theory is well developed with models suitable for a wide variety of sampling

situations. Computer software such as program MARK (White & Burnham, 1999)

can be used to ® t these models encompassing a large variety of mark- recapture
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data types within a common analysis framework. Studies using these models tend

to focus on survival rates. More recently, models have been developed that allow

us to focus attention on recruitment rates (Pradel, 1996) and probabilities of

moving between states (Brownie et al., 1993).

A statistical model can be thought of as a way of summarizing data using a small

number of parameters. In an example we discuss below, a mark- recapture study

was carried out with 48 sampling occasions and 1045 unique encounter histories.

The full Jolly- Seber model has 141 estimable parameters, and although this is

considerably fewer than the 1045 encounter histories, it hardly represents a compact

summary of the data. Moreover, the 46 identi® able survival rates in the Jolly- Seber

model oþ er a simple description of the survival process operating over time, but

provide little insight into the underlying biological processes. What is needed in

this example is a model for the survival probabilities that incorporates key structural

features of the biological processes.

1.2 Random eþ ects models

To focus our attention on interesting biological processes, we can think of mark-

recapture data as arising through a two-stage process. In stage I, the true abun-

dances, birth rates and survival rates can be thought of as being sampled from

some distribution that depends on a small set of parameters. The realized (but

unobserved) values for these can be regarded as ® xed parameters at stage II. In

stage II, individual encounter histories are obtained by sampling the animal

population that exists during sampling. There may be considerable interest in stage

II sampling, but matters of real biological interest are in stage I.

This hierarchical sampling process places us in the realm of `random eþ ects

models’ , in which we envisage a sampling distribution for the abundances, births

and survivals at stage I. We can hypothesize that there is a relationship between

some of these parameters, for example an eþ ect of abundance on survival rate. We

do not expect that variation in the survival rates over time will be wholly determined

by abundance. Other in¯ uences such as weather are also likely to be important. If

we have measured these other in¯ uences then we can specify their eþ ect in the

model. However, there will inevitably be unexplained sources of variation but if we

are prepared to assume that these unexplained departures from the model are

random, then their combined in¯ uence can be expressed by including a random

term in the model.

Random eþ ect mark- recapture models have been developed by Burnham (in

press) and implemented in program MARK. These models are relatively simple

and at present restricted to the case where the vector of parameters is sampled

independently from a common distribution. These models are useful where a

simple summary such as an average or trend is sought, or where the study has

been conducted within the context of a simple experimental design. The method-

of-moments estimators in MARK are simple and allow the user to avoid assuming

a particular distribution at stage I. Random-eþ ects models and Bayesian inference

are closely related and share the same methodological problems. In recent years

there has been a resurgence of interest in Bayesian methods, largely prompted by

the development of new analysis methods such as Markov chain Monte Carlo

(MCMC) (Gelfand & Smith, 1990; Zeger & Karim, 1991; Smith & Gelfand,

1992), that make ® tting the necessary models feasible.
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1.3 Density dependence

Density dependence is an important ecological concept that has particular relevance

to the management of exploited populations. Our interest in density-dependence

is motivated by an exploited `titi’ , or sooty shearwater, (Puý nus g riseus) population

in the southern part of the South Island, New Zealand. The Rakiura Maori have

harvested titi nestlings for at least 300 years. Recently, a research programme has

been established that aims to ensure that titi harvest is sustainable. Simple

population models suggest that population growth rate is likely to be sensitive to

changes in survival, age at ® rst breeding and breeding success. However, if these

parameters are density-dependent, the titi population may be able to compensate

for losses due to harvest. Such a compensatory mechanism is a central theme of

harvest literature (Robson & Youngs, 1971) and the main scienti® c justi® cation for

wildlife harvest.

In trying to measure the strength of any density dependent relationship between

survival and abundance, the form of the relationship will be important. For

example, a linear relationship between abundance and survival (or suitably trans-

formed survival) might be hypothesized over the range of abundances being

considered. Alternatively, density dependence might not operate until abundance

exceeds a particular level, in which case a non-linear relationship would be

appropriate.

Note that we are assuming that abundance of the population under study is a

measure of density. It is possible that a more general measure of density could be

more appropriate. For titi, the number of breeding birds per square metre might

be more important, or the density of non-breeders.

As the term suggests, density dependence implies that population parameters

are a function of animal density or abundance. Importantly, if the relationship is

between abundance and survival then density-dependence implies that the density

function for survival rate conditional on abundance is not the same as the marginal

density for survival rate.

1.4 Fitting density dependence models

Given long-term data sets with relatively constant eþ ort we argue that it is possible

to investigate ® ner-scale population processes such as the eþ ect of density on the

population. This idea is not new. In their monograph Lebreton et al. (1992) brie¯ y

discuss the idea of using density as a covariate and give some examples.

A full likelihood approach to modelling density dependence requires a distribu-

tion to be speci® ed for each of the two stages described above. Let N i denote the

abundance at time i, S i the survival rate from time i until time i + 1, and b i the

birth rate at time i. At stage I, we assume that the abundances, survival rates, and

birth rates are sampled from a distribution g({N i}, {S i},{ b i}; l ) with parameters

represented by l and cumulative distribution function G({N i}, {S i},{ b i}; l ). Stage

II involves modelling the mark- recapture data represented by x as being a sample

from the distribution f (x ½ {N i }, {S i}, { b i}). Estimation is carried out using the

distribution h(x; l ) which is found by integration (Link, 1999):

h(x; l ) 5 ò f(x ½ {N i}, {S i}, { b i})d G({N i},{S i},{ b i}; l ) (1)

Analytical evaluation of the integral in (1) is problematic for mark- recapture

models (Burnham, in press), although the relatively recent development of MCMC
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methods means that ® nding h(x; l ) by computer intensive means is becoming

increasingly feasible. In addition to the structural elements specifying model

density, a distribution must also be speci® ed at the ® rst stage of sampling in order

to use MCMC methods.

In the analysis discussed below we concentrate on density-dependent survival

and avoid specifying a full model for stage I sampling. Instead we only specify the

structural form of the relationship between survival and abundance and estimate

model parameters using the method of moments.

2 Methods

2.1 Estimating density dependence by linear regression

We assume that from the mark- recapture analysis we obtain estimates of SÃ i ½ S i

which are random variables with mean S i and covariance given by Cov(SÃ i ½ S i ,

SÃ j ½ S j) 5 x
2
i j . From the stage I process we assume that S 5 (S1 , . . . , Sk) ¢ (or some

transformation of S ) is a random vector with mean X b and variance- covariance

matrix r
2
I, where row i of the matrix X is given by x i 5 (1 N i). Unconditionally,

YÃ 5 (SÃ 1 ,. . . . , SÃ k) ¢ is a random vector with mean vector X b and variance- covariance

matrix D 5 r
2
I + W where

W 5 f
x

2
11 x

2
12 ¼ x

2
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2
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2
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2
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2
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If we could determine N i exactly the obvious estimator would be:

b Ã 5 (X ¢ DÃ 2 1
X) 2 1

X ¢ DÃ 2 1
YÃ , obtained by conditioning on values of x Ã

2
i j from the mark-

recapture study and using an iterative procedure to estimate b and r
2. There are

several problems with this approach to modelling a density-dependent relationship

between N i and S i . First, we cannot determine N i , but instead must use NÃ i , which

we hope is a good estimate of N i . If we replace X by XÃ and use the estimator

b Ã 5 (XÃ ¢ DÃ 2 1
XÃ ) 2 1

XÃ ¢ DÃ 2 1
YÃ , we have an errors-in-variable problem. Secondly, in

mark- recapture problems there is a sampling covariance between estimated abun-

dances and survival rates that must be taken into account. Thirdly, the elements

of the matrix W are not known exactly, but instead are estimated. Provided the

mark- recapture study is based on a large sample size, the substitution of x Ã
2
i j for

x
2
i j should introduce little bias but it may be a problem in studies with small sample

size. A ® nal problem is that the parameter r
2 must also be estimated, but is required

in the matrix D to obtain b Ã .

2.2 B ias-adjusted errors-in-variables estimator

It is well known that errors-in-variables attenuate the estimate of b toward 0, and

as a consequence the least-squares estimator will tend to underestimate the strength

of the density-dependence relationship (Wittink, 1988). Fuller (1987, p. 14)

provides a bias-adjusted estimator based on the method-of-moments for the case

where D 5 r
2
I. It is straightforward to extend Fuller’s estimator to the case where

D 5 r
2
I + W, and where there are sampling covariances between XÃ ½ X and YÃ ½ Y (see

the appendix).
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By ® tting the Jolly- Seber model to mark- recapture data we can obtain maximum

likelihood estimates of N i , S i , Var (NÃ i ½ N i), Var (SÃ i ½ S i), Cov(SÃ i ½ S i , NÃ i ½ N i), and

Cov(SÃ i 2 1 ½ S i 2 1 , NÃ i ½ N i) for the sampling occasions i 5 2, . . . , t 2 2. Using the in-

variance property of maximum likelihood estimators (MLEs) it is relatively simple

to ® nd the MLEs for transformed abundances and survival probabilities denoted

N ¢i and S ¢i .
Let

M T ¢ T 5 f
0 0

0 +
n

i 5 1

Var (NÃ ¢i ½ N i) g and M T ¢ e 5 f
0

+
n

i 5 1

Cov (SÃ ¢i ½ S i , NÃ ¢i ½ NÃ i) g
then b Ä 5 (XÃ ¢ XÃ 2 M T ¢ T) 2 1(XÃ ¢ Y 2 MT ¢ e) is a bias-adjusted estimator for b (see

appendix for derivation). Because b Ä is a complicated function of {NÃ i} and {SÃ
2
i } we

found Var ( b Ä ) by jackkni® ng the NÃ i and SÃ i pairs.

2.3 Examples

We examined density-dependence in shearwater population dynamics using two

data sets. In each case we examined the relationship between the logit of the

survival probability and untransformed abundance. Both data sets are from studies

of birds closely related to P. griseus: (P. tenuirostris, see Bradley & Wooler, unpub-

lished data; P. huttoni , see Cuthbert, unpublished data). The relationship between

survival and abundance in these two species is expected to be similar to that in

P. g riseus. Speci® c details of the location and methods used in these studies is

available in Bradley et al. (1991) for P. tenuirostris and Cuthbert (1999) for P. huttoni.

3 Results

A plot of estimated survival probabilities against abundance estimates provides

little suggestion of a functional relationship for the short-tailed shearwater popula-

tion (Fig. 1). Formal analysis of these data provided no evidence of a linear
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Fig. 1. Survival estimates plotted against abundance estimates from a sample of 1045 short-tailed shear-

waters banded at Fisher Island, Tasmania, between 1947 and 1994. The error bars represent + / 2 one

standard error.
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Table 1. Estimates of the slope of the eþ ect of abundance on survival

and associated standard errors for density for short-tailed shearwaters

banded at Fisher Island 1947 - 1994 and Huttons shearwaters banded

at Kaikoura 1991 - 1999

Data 95% C.I

Slope SE Lower Upper

Fisher Island 2 0.0025 0.0055 2 0.0134 0.0083

Kaikoura 2 0.0612 0.0674 2 0.1933 0.0709

functional relationship between abundance and survival probabilities (Table 1). A

con® dence interval for the odds ratio, indicates that a 20 bird change in the

population (about 20% of the average estimated abundance) would lead to a

change in the odds of survival by a factor of between 0.77 (a 23% reduction) and

1.181 (an 18% increase). Thus, although there is no evidence of a density

dependent relationship between abundance and survival for short-tailed shearwaters

on Fisher Island the data are suý cient to rule out a moderately strong relationship.

The Kaikoura data provided little evidence for density-dependence other than

that the lowest survival estimate corresponds to the highest abundance estimate

(Fig. 2). Even a naõÈ ve estimate of the relationship between survival and abundance,

ignoring the uncertainty in NÃ i , provides at best weak evidence of a negative

relationship ( b Ã 1 5 2 0.0022, SE 5 0.0012). Our analysis using the bias adjusted

estimator showed no evidence of a density-dependent relationship. Although the

point estimate of the slope of the survival-abundance relationship was negative, the

con® dence interval for the odds ratio indicated that a change in abundance of

approximately 20% would lead to a change in the odds of survival by a factor of

between 0.38 (a 62% reduction) and 1.426 (a 43% increase). The correct inter-

pretation of these results is that the Kaikoura data set is too sparse to rule out

anything but a strong density dependent eþ ect.
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Fig. 2. Survival estimates plotted against abundance estimates from a sample of Hutton’ s Shearwaters

banded at Kaikoura on the New Zealand mainland, 1991 to 1999 . The error bars represent + / 2 one

standard error.
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4 Discussion

As emphasised by Link (1999), a particularly important role for random eþ ects

models is in providing a useful summary for a large number of parameters. Random

eþ ects models can also be useful for representing important functional relationships

between parameters that have biological relevance. This is particularly relevant to

mark- recapture data sets where relatively lengthy studies lead to a large number of

parameter estimates.

We have modelled mark- recapture data as arising from a 2-stage process in

which the mark- recapture parameters, the abundances survival rates and birth

rates are ® rst sampled from a `hyperdistribution’ . Conceptualizing mark- recapture

parameters as random variables is a natural and logical step in mark- recapture

models. Density dependent survival implies the presence of a functional relationship

between abundance and survival. However it is unreasonable to believe that survival

rates are determined wholly by abundance. Obvious environmental in¯ uences

should also be included in the model at this stage. In addition to the structural

components, the random term in the random eþ ects model is particularly important

as it is needed to account for in¯ uences that we are unable to explain or model

explicitly.

In order to have a realistic chance of identifying major structural features of the

data it is important to have a large number of observations. It is unreasonable to

expect much to be learned from a regression based on a small number of

observations. However, the interpretation of `small’ may be diþ erent for a biologist

designing a study than for a statistician analysing the data. This emphasizes the

need for biologists to commit resources to long-term monitoring programmes.

In contrast to the development of methods for modelling mark- recapture data

conditional on the parameters, higher-order modelling is relatively undeveloped

and there are few examples where such a procedure is followed (for an exception

see Pledger, 1999). With the exception of Burnham’s random eþ ects models

incorporated in MARK (White & Burnham, 1999), random eþ ects models are not

available in accessible software for mark- recapture data. For biologists to extract

the full information from mark- recapture studies it is important that software for

random eþ ects models is developed and widely distributed. We anticipate that

MCMC methods for Bayesian analyses will ® gure strongly in this development.

Our results give little support for density dependence in adult survival in both

data sets examined. In the case of the Fisher Island study, data were su ý cient for

us to rule out anything but a small density dependent relationship. In this case,

we would expect to see little compensation in survival rate as breeding densities

were reduced by harvest. The Kaikoura data have too few years of observation for

us to learn much about density dependence.

The methods presented here can also be used to assess density dependence in

recruitment, which might arise as a consequence of intra-speci® c competition.

With multi-state models (Brownie et al. 1993) becoming more prevalent, there is

also potential to use them to measure density dependence in the rates at which

birds miss breeding.

In the type of analysis we have considered here, `density’ was measured by

population abundance. However, an inappropriate measure of density may result

in density dependence being overlooked when it is present. This could occur if the

abundance of breeder in¯ uences survival or reproduction, or both, but the data do

not allow us to discriminate between breeders and non-breeders.
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Appendix

Let Y 5 X b + e, where Y is an (n 3 1) vector, X is an (n 3 p) matrix of constants,

e is an (n 3 1) random vector with mean zero, and R wz 5 Cov(w,z) is the covariance

matrix for the random vectors w and z. Suppose we observe Y and XÃ 5 X + T

where T is a (n 3 p) random measurement error matrix made up of column

vectors t i(i 5 1, . . . , p) each with mean 0. From least-squares estimation theory

E[X ¢ X) 2 1
X ¢ Y ] 5 (X ¢ X) 2 1

X ¢ X b 5 b . Now:

(1) E[XÃ ¢ Y ] 5 E[(X + T ) ¢ Y ] 5 X ¢ X b + E[T ¢ Y ].

(2) E[T ¢ Y ] 5 E[T ¢ (X b + e)] 5 E[T ¢ X b ] + E[T ¢ e] 5 0 + (tr ( R t1 e), tr ( R t2e), . . . ,

tr ( R tp e)) ¢ , where tr(Z ) is the trace of the matrix Z.

(3) E[XÃ ¢ XÃ ] 5 E[(X + T ) ¢ (X + T ) ¢ ] 5 E[X ¢ X +X ¢ T +T ¢ X +T ¢ T ] 5 X ¢ X + E[T ¢ T ]

(4) E[T ¢ T ] 5 f
tr ( R t1t1 ) tr ( R t1t2 ) ¼ tr ( R t1tp )

tr ( R t2t1 ) tr ( R t2t2 ) ¼ tr ( R t2tp )

: : ` :
tr ( R tpt1 ) tr ( R tpt2 ) ¼ tr ( R tptp ) g where tr ( R t jtk ) 5 +

n

i 5 1

Cov(ti j , tik ) .
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If the covariances in E[T ¢ T ] are known, then XÃ ¢ XÃ 2 E[T ¢ T ] is a consistent estimator

for X ¢ X, and if the covariances in E[T ¢ Y ] are also known, then

b Ä 5 (XÃ ¢ XÃ 2 E[T ¢ T ]) 2 1 (XÃ ¢ Y 2 E[T ¢ Y ])

should also be a consistent estimator for b . Assuming E[T ¢ Y ] 5 0 gives us the

matrix analogue of Feller’ s estimator. Note that we can generalize the above to

weighted least squares estimators of the form (XÃ ¢ V 2 1
XÃ ) 2 1

XÃ ¢ V 2 1
Y however, if the

weight matrix has elements that need to be estimated we lack a theory that can be

used as a basis for deriving an estimator.


